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Magic integers enable several unknown phases to be expressed in terms of a single variable at the expense 
of introducing some error in the phases represented. The economy of variables is particularly useful in a 
multisolution direct-methods program like MULTAN where a successful solution may depend upon the 
ability to use a large number of phases at the beginning of phase determination and the computing time is 
proportional to the number of variables. Formulae are presented which give the phase errors in the 
magic-integer representation. A recipe is given for the generation of efficient magic-integer sequences in 
which the r.m.s, error is spread evenly over all the phases represented. These sequences minimize the overall 
phase error for a given maximum integer in the sequence. It is found that the errors are minimized when the 
differences between adjacent members of the magic-integer sequence form the terms of a geometric 
progression and the smallest integer is greater than half the largest. 

Introduction 

The concept of magic integers was introduced by 
White & Woolfson (1975) in paper VII of this series 
and an extension of their use was described by 
Derclercq, Germain & Woolfson (1975) in paper VIII. 

For a sequence of n integers, denoted by 
rnl, m2, ...., m,, n phases are represented by the equations 

~pi=mix mod (1), i= 1 to n, (1) 

where the phases, qh, are in cycles and the set of equa- 
tions is approximately satisfied by some value of x in 
the range 0 < x < l .  Trials by White & Woolfson 
showed that the phase error in the magic-integer 
representation was acceptably low for sequences in 
which n < 8 and they demonstrated the use of magic 
integers in the solution of two known structures. 
Declercq, Germain & Woolfson described a more 
powerful method of using these ideas, called the P-S 
set method, which allows a large number of phases to 
be used simultaneously at the beginning of phase 
determination. The power of this method has been 
amply demonstrated by the solution of several crystal 
structures which had previously been very difficult or 
even impossible for M ULTAN to solve (private com- 
munication from Dr G. Germain, 1976; see also paper 
VIII). 

This paper critically examines the errors involved in 
the magic-integer representation of phases. It is ob- 
served that some integer sequences give rise to larger 
phase errors than other, apparently similar, sequences 
and a method of generating the more efficient magic- 
integer sequences is given. An analytical method of 
calculating the r.m.s, phase error for any particular 
sequence is described and a formula is developed 
which gives a lower bound to the r.m.s, error. 

The magic-integer representation 

A convenient and fruitful approach to the magic- 
integer representation of phases is to regard the set of 
n equations (1) as the parametric equation of a straight 
line in n-dimensional phase space. The most trivial 
example of this is a magic integer sequence of length 
one, so that a single phase is represented by 

q)  l ~---X . (2) 

In this case, the straight line fills the whole of the one- 
dimensional phase space in which it exists and each 
possible phase value corresponds exactly to a point on 
the line. The equation (2) can therefore represent the 
phase ~1 in terms of the variable x without any error 
at all. 

The first non-trivial case occurs with an integer 
sequence of length two as in 

~ol=mlx } (3) 
(D2 ~ m2x 

which is the equation of a straight line in two-dimen- 
sional phase space. For the special case where ml = 2, 
m 2 = 3, the line represented by (3) is shown in Fig. l(a). 
When the phases are measured in cycles, modulo (1), 
and x is restricted to 0 < x < 1, the line becomes that 
shown in Fig. l(b). That is, it becomes a family of 
parallel straight lines of equal spacing in a box 
bounded by Cpl=0,1 and cP2=0,1 .  N o w ,  any pair of 
phase values (cpl,cp2) can be represented by a point in 
the box and the nearest point to (cp~,cp2) on any line 
will give the best magic-integer representation of the 
phases in a least-squares sense. For example, the point 
A in Fig. l(b) is (0.600,0.250) and the nearest point to A 
on the straight line is B. A simple calculation shows 
that B is the point (0.531,0.296) and the value of x at 
B is 0.765. The errors in the magic-integer representa- 
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tion of these phases are therefore -0 .069 and 0.046 
cycles, i.e. -24 .9  ° and 16.6 ° respectively. The length 
of the line AB is given by 

AB=(Aq~ 2 + Atp2) x/2 (4) 

where A~pt and Aq~2 are the phase errors involved. 
Because B has been chosen to be the nearest point on 
the line to A, the phases represented by B are seen to be 
those which minimize the sum of the squares of the 
errors. 

It should be clear from Fig. l(b) that, provided the 
integers have no common factor, the higher the integers 
used, the closer together will be the lines in phase space. 
It follows from this that the larger the integers, the 
smaller will be the expected overall error in the phases. 
In addition, the more nearly equal the integers are, the 
more evenly divided will be the error between the in- 
dividual phases. These conclusions are only strictly 
true for the sequences of length two just considered. 
They do, however, indicate tendencies for longer se- 
quences and it is useful to bear them in mind. 

The generalization of the magic-integer representa- 
tion to n phases is now easily made. The set of equations 
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Fig. 1. (a) The line represented by ¢Pa =2x,  q~2=3x in ~Pl, ¢P2 space. 

(b) Graph of tpl=2x, ~p2=3x, mod(1), 0 < x < l .  The pair of 
phase values (0.600, 0-250) is represented by the point A. The 
nearest point to A on any line is B where x=0.765, giving ~Pl = 
0.531, ¢P2 =0.296. 

(1) represents a family of parallel straight lines in n- 
dimensional phase space. Any point A(~Pl,~P2,...,~P,), 
in this space represents a set of phase values and their 
magic-integer representation is given by the point on 
one of the lines which is nearest to A. The square of the 
shortest distance between A and the nearest line gives 
the sum of the squares of the phase errors. 

Calcu la t ion  o f  r .m.s,  error 

Since the magic-integer representation introduces er- 
rors in the phases, it is necessary to investigate the sizes 
of the errors involved. In particular, it is of interest to 
calculate the r.m.s, phase error of any given sequence, 
i.e. the r.m.s, error of all the phases taken together and 
the r.m.s, error of each individual phase. 

Referring to Fig. l(b), any point in phase space which 
is the same distance from the line as the point A will give 
rise to the same phase errors. When studying errors, 
therefore, it is convenient to consider the projection 
down the family of parallel lines onto a line parallel to 
AB. This consists of a one-dimensional lattice of points 
whose spacing is given by the spacing of the lines in 
Fig. l(b). The r.m.s, phase error of the magic-integer 
sequence is now related to the r.m.s, distance of all 
points in the projection from the nearest lattice point. 
If the integers are ml and m2, simple geometry shows 
that the spacing of the lines, and hence the lattice 
spacing in the projection, is given by: 

lattice spac ing=a= 1/(m 2 +m~) 1/2. (5) 

The maximum distance of any point from the nearest 
lattice point must be half of this, i.e. a/2. The mean 
square distance of any point from the nearest lattice 
point is therefore given by: 

mean square distance = 2 -['a/2 
a 2 

- " x 2 d x =  -i-2" (6) 
a do 

Substituting the value of a from (5) leads to the root- 
mean-square distance: 

1 
r.m.s, dis tance= 2]/3(m 2 + m 2 ) l / 2  . (7) 

This represents the root mean sum of the squares of the 
errors of two phases (measured in cycles). If the errors 
are assumed to be evenly distributed between the 
phases, the r.m.s, error of a typical phase represented 
by the sequence is half of the quantity in (7) above. 
Converting to radians, the r.m.s, error of a typical 
phase is therefore: 

7~ 
A~Prms= 2]//3(m2 +m2)1/2 radians.  (8) 

Alternatively, the phase error may be resolved into 
components in the ~ol and (]92 directions and the r.m.s. 
error of each phase individually can be shown to be: 

~Z m2 radians (9a) r.m.s, error in ~01- [/3 m 2 + m  2 
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~z ml radians.  (9b) r.m.s, error in q~2 = V~ m 2 + m 2 

This calculation may be generalized in principle to 
sequences of length n as follows. The projection down 
the family of parallel lines represented by (1) is a lattice 
of points i n ( n -  1)-dimensional space. The mean square 
distance, d z, of any point in the (n-1)-dimensional  
space from the nearest lattice point is then the mean 
sum of the squares of the errors in the n phases. 
Assuming the error to be evenly distributed among 
the phases, the r.m.s, error of a typical phase is given by: 

Aq~rm s = 2re radians.  (10) 

The field of integration for the calculation of d 2 must 
now be defined. This is the ( n -  1)-dimensional volume 
around each lattice point such that all points within 
the volume are closer to the lattice point at its centre 
than any other. It is the polyhedron, known in n-dimen- 
sional geometry as the Voronoi polyhedron (Voronoi, 
1908; see also Rogers, 1964, pp. 74-80), whose plane 
faces are perpendicular bisectors of the lines between 
the lattice point and each of its near neighbours. The 
mean square distance is then given by" 

d--~ 1 I = -~ r2dV, (11) 
,Iv 

where V is the volume (or content) of the ( n -  1)-dimen- 
sional Voronoi polyhedron and r is the distance of a 
general point within V from its geometric centre. The 
equations (10) and (11) now define the r.m.s, error of 
any magic integer sequence of length n. 

The error distributions for individual phases can 
also be obtained from the Voronoi polyhedron. Taking 
the origin as the geometric centre of the polyhedron, 
the probability of an error Aqgi in ~oi is proportional to 
the content of the (n-2)-dimensional  section at ~0~ = 
Aq~. The r.m.s, error of each individual phase can then 
be obtained from the corresponding probability den- 
sity. This can most easily be expressed as" 

r.m.s, error in q~i=2~ r~dV radians,  (12) 

where r~ is the distance in the q~i direction of a general 
point in the Voronoi polyhedron from its geometric 
centre. The field of integration is the same as in (11). 

Unfortunately, the field of integration is not easily 
expressed in terms of the magic integers, except in the 
case of n = 2 which has already been dealt with. It fol- 
lows that no general formula has been found which 
simply relates the integers to the corresponding r.m.s. 
phase errors. The complete calculations must be per- 
formed for each sequence separately. 

As an illustration of such a calculation, let us take 
the sequence 4 6 7. The projection down the lines 
these integers produce in three-dimensional phase 
space is the two-dimensional lattice shown in Fig. 2(a). 
The figure also gives the dimensions of the lattice. An 
enlarged portion of this lattice is shown in Fig. 2(b) in 

which has been constructed the two-dimensional 
Voronoi polyhedron - in this case a hexagon. The 
edges of the hexagon are perpendicular bisectors of the 
lines joining the central lattice point to its near 
neighbours and, clearly, every point in the hexagon is 
closer to the central lattice point than to any other. The 
vertices of the hexagon are at a maximum distance 
from the lattice points and must therefore represent 
the maximum phase errors which can occur with the 
sequence 4 6 7. Taking the central lattice point, O, as 
the origin of phase space, the coordinates of the vertices 
are given in Table 1. From this, the maximum possible 
phase errors in ~01,cP2,cP3 are seen to be 65.9, 55.2, 46-3 ° 
respectively. Note that the largest error is in the phase 
represented by the smallest integer and conversely for 
the smallest error. The mean square distance, d 2, of 
points within this hexagon from the origin, O, (cal- 
culated as in equation 11) is found to be 0-0163 cycles 2 
and, from (10), this corresponds to an r.m.s, error for 
the sequence of 26.6 ° . 

Table 1. Coordinates (°) of the vertices of the hexagon 
in Fig. 2(b) 

The central lattice point is at (0, 0, 0) 
( ~ 1  ( ~ 2  ( / )3  

A 65"9 -23"3 - 17"8 
B 51"7 19.6 -46.3 
C - 1"8 55"2 - 46"3 
D - 65"9 23"2 17-8 
E - 51"7 - 19"6 46"3 
F 1"8 - 55-2 46-3 

B C 

• - v • 

A D 
(a) 

• • • 

B 

F 
E 

(b) 

Fig. 2. (a) The two-dimensional lattice produced by the sequence 
4 6 7. Dimensions of the lattice in cycles and degrees are: AB= 
0.359; BD=0.372; DA=0.299; LDAB=68"3°; LABD=48"2°; 
a BDA = 63.5 °. (b) The field of integration (Voronoi polyhedron) 
to calculate the r.m.s, error for the sequence 4 6 7. 



PETER MAIN 753  

The probability density distributions of the errors in 
the three phases can be obtained as already described. 
In this case, the probability of an error A~oi in qh is 
proportional to the length of the line of intersection of 
the hexagon with the plane normal to the q~ axis at 
~oi= A~0~. The probability density functions obtained 
in this way are shown in Fig. 3. From these, the r.m.s. 
errors in q)l,~02,q~3 can be obtained as 30.4,24-3,24.6 ° 
respectively. 

Lower bound of r.m.s, error 

As the Voronoi polyhedron cannot be simply described 
in terms of the magic integers, making calculations of 
r.m.s, error extremely clumsy, it becomes necessary to 
make some approximations in order to produce a 
general formula for the r.m.s, error. A useful simplifica- 
tion is to take the field of integration in (11) as an 
(n-1)-dimensional hypersphere of the same volume 
as the polyhedron. This will always give a value of d 2 
which is a minimum for the volume considered and 
therefore will lead to a lower bound of the r.m.s, error 
as calculated from (10). 

A formula for the lower bound of the r.m.s, error of 
a sequence, A qhb, can be developed as follows. The 
family of lines in n-dimensional phase space intersect 
the (n-1)-dimensional section perpendicular to the 
~0j axis in mj points arranged on a lattice. The ( n -  1)- 
dimensional volume associated with each point is 
therefore 1/m r. If this section makes an angle 0 r with 
the direction of the lines, the volume associated with 
each lattice point in the section perpendicular to the 
lines must be cos O/m r. That is, the volume, V, of the 
Voronoi polyhedron is: 

V -  cos0j (13) __ 
m r d 2 = 

The value of cos O r may be obtained from the inner 
product of the unit vectors representing the directions 
of the two sections, 

1'S- 

1'0 " "- • 

p(A~: ~., 
i ~. . 

o.s "x.\ \ 

I ~3 X dP2 "\ ~1 
, , I \ , \ 

60* 70* 0 20 ° 40* 
+ (degrees) --4,- 

Fig. 3. Probability density distributions of the errors in individual 
phases represented by ~01 = 4x, q~2 = 6x, q~3 = 7x, mod(1). 

(ml,m:, . . . ,m j, . . . ,m,).  (0, 0,..., 1,...,0) 
i.e. cos 0j= (~  m2)1/2 

i 
_ mj 

(~  m2)1/2 • (14) 
i 

From (13) and (14), the volume of the Voronoi poly- 
hedron is: 

1 
V = (15) 

Let us assume that this (n-1)-dimensional volume 
is a hypersphere centred on a lattice point. The volume 
of an (n-1)-dimensional hypersphere of radius a is: 

2a"- a n(,- 1)/2 
V = . (16) 

So from (15) and (16) we obtain the radius of the hyper- 
sphere as" 

i ~ !  1 l/(n- 1) 1 F (17) 
a = - ~  j 

The mean-square distance, d 2, of all points in the 
hypersphere from its centre is obtained by using an 
(n-1)-dimensional spherical polar coordinate system. 
Equation (11) then becomes: 

f:dO f:ao2,. 2a"- 1re("- 1)/2 r2dr .., dO._ 2 0 
X r n - 2  COS n - 3  01 COS n - 4  0 2 , . . . , C O S  On_ 3 . (18) 

The variables are separable and the integrations can 
be carried out as in Kendall (1961, p. 35). The result is" 

/ 4 \  

_ _  (n  - -  1 ) / '  f - @ )  an .t.. 1 7~(R_ 3)/2 ( n _  l ) a  2 

dZ= . . .2n = 
2a"-l~z "-1'/2 n + l  F [ n - l ' ~  n + l  

(19) 

Using (10), (17) and (19), we obtain an expression for 
the lower bound of the r.m.s, error, AtPlb, as 

radians. (20) 
/ re (n-1)  IF (-~)1 

A~p'b----2 ~V n--~l ) L(#mn,,U 

l/(n- 1) 

The actual r.m.s, error of a sequence for which n > 2 
must always be greater than A ~Olu, but the lower bound 

AC 33A-5" 
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forms a very useful check on its quality. The closer the 
r.m.s, error is to the lower bound, the more efficient 
will the sequence be. For n =  1, equation (20) gives 
ACPlb=0, which has already been deduced from (2). 
Also, for n=2 ,  equation (20) reduces to the exact 
formula (8) for this case. Taking the sequence 4 6 7, 
equation (20) gives the lower bound as 26.2 ° . Since the 
exact r.m.s, error of 26"6 ° is only slightly greater than 
this, 4 6 7 is seen to be a particularly efficient sequence. 

Note how A q~lb depends upon the length of the 
sequence and the integers themselves. Using the main 
term in Stirling's formula for the gamma function, i.e. 

F ( x ) -  x ' (21) 

we obtain from (20) for large n: 

~/2x I ~ 1  11/at"-l)  Aqhb-- -7- ~ (22) 

Clearly, the larger the integers the smaller will be the 
lower bound, but Acpl b becomes more insensitive to the 
size of the integers as n increases. In addition, Aqhb 
increases with n for the same size of integers. 

Efficient magic-integer sequences 

We now come to the important question of how to 
predict efficient magic-integer sequences. An efficient 
sequence must fulfil the following criteria as well as 
possible: 

(a) the integers should be small; 
(b) the overall r.m.s, error should be small; 
(c) the r.m.s, error should be evenly divided among 

the phases represented. 
The criteria (a) and (b) are mutually opposed and a 
compromise must be made according to the particular 
application of the sequence. In the extreme case of 
criterion (c) where all phases have identical errors, the 
Voronoi polyhedron must be a hypersphere and the 
r.m.s, error is given by the lower-bound formula (20). 
It is clearly impossible to produce a lattice in which the 
unit cell is a hypersphere, but a good approximation 
is produced if the n ( n - 1 )  nearest neighbours of each 
lattice point are equidistant. Even this is impossible in 
( n -  1)-dimensional space, but it is an ideal which must 
be approached as closely as possible. Obviously, (c) 
may be used as a single criterion in place of both (a) 
and (b). 

In order to reduce the number of variables in the 
problem, let us .seek the most efficient sequence of in- 
tegers, i.e. that which minimizes A q~rms, for which the 
largest integer, m,, is a fixed value. This also turns out 
to be a very convenient way of thinking about magic- 
integer sequences in practical applications. 

It is already clear that the larger the integers, the 
smaller will be the r.m.s, phase error. The first rule for 
creating efficient sequences is therefore quite obvious - 
that, with the largest integer kept fixed, the remaining 

integers in the sequence should be as large as possible. 
It has also been observed that the more nearly equal 

the integers in the sequence are, the more evenly will 
the error be distributed among the phases. The second 
rule for creating efficient sequences must therefore be 
that the integers should be as close to each other in 
value as possible. 

A third rule for creating efficient sequences is also 
required. If any integer in the sequence is comple- 
mented, i.e. if mi is changed to m , - m i ,  the effect in 
n-dimensional phase space is merely to reverse the 
direction of the ith axis. No other changes take place 
which will affect the quality of the sequence. The result 
of this change is to decrease the lower-bound r.m.s. 
error, A CPlb, if m n - m i > m i ,  i.e. if the complemented 
integer is larger than the original. Conversely, A~01b 
rises if m , - m i  < m~. The effect on the actual r.m.s, error 
is the same and this is consistent with the earlier ob- 
servation that the larger the integers the smaller the 
phase errors. This makes it possible to minimize the 
r.m.s, error, without increasing the size of the largest 
integer, by complementing all integers that are less 
than half the maximum. The resulting sequence will 
have ml > m,,/2. 

The fourth, and very important, rule which efficient 
sequences must obey is best illustrated by an actual 
example. We already know 4 6 7 to be a good sequence 
and its two-dimensional lattice is shown in Fig. 2(a). 
It can be seen that the lattice is close to hexagonal, 
which approaches most closely the impossible ideal in 
two-dimensional space of criterion (c). It has already 
been shown that the actual r.m.s, error of this sequence 
is 26.6 ° and the lower bound is 26.2 ° . Let us compare 
this with the sequence 3 4 7, which is deceptively 
similar to the first example. However, the lattice it 
generates is shown in Fig. 4 which also gives the lattice 
dimensions. It is immediately apparent that it corre- 
sponds to very poor packing of spheres in two dimen- 
sions. Consequently, the r.m.s, error is expected to be 
much higher than the lower bound. Actual calculation 
shows ACPrms tO be 36.9 ° while Aqhb is 28.3 °. The reason 
why the actual error is so much greater than the lower 
bound is the uneven distribution of lattice points as 
seen in Fig. 4. Examination of the process which sets 
up the lattice shows immediately that this effect is 
caused by two of the integers (3 and 4) summing to a 

B C • • • ~ • • • • 

• • ~ - ~  • • • • 
A D 

Fig. 4. The two-dimensional lattice produced by the sequence 3 4 7. 
Dimensions of the lattice in cycles and degrees are: AB=0-581; 
BD=O.593;DA =0.201; ~DAB=83.4°; LABD= 19-8°;/_BDA= 
76-9 ° . 
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third integer (7). This simple linear relationship among 
the integers will always produce such a result. There- 
fore, it may be stated as a general rule that if the sum or 
difference of two integers is also a member of the 
sequence, the r.m.s, error of the sequence will be higher 
than it could otherwise be. In view of rule 3, the sums 
and differences of integers in the sequence being unique 
must also apply when the integers are complemented. 
This rule leads to a sequence in which the differences 
between adjacent integers are the terms of a geometric 
progression. Such a sequence ensures that the sums 
and differences of pairs of integers are all unique and 
are not of the sequence. 

A combination of these four rules leads to the most 
efficient magic-integer sequences found so far which 
are of practical use. A typical sequence has 2ml = m, + 1 
and the differences m, , -m , ,_  1,m,,- 1 - m n - z , . . . , m 3 -  
mz, m z - m l  form a geometric progression with a com- 
mon ratio, r > l .  Examples of such sequences are 
shown in Table 2 where they are based on the geometric 
progression 1 2 4 8 16,. . . ,2P,. . . .  Also shown in Table 2 
are the actual r.m.s, errors and the lower bounds of the 
sequences. In each case, the actual error is only slightly 
more than the lower bound, showing that the sequences 
are very good. The r.m.s, errors were nearly all cal- 
culated using a Monte Carlo technique rather than the 
cumbersome analytical method described in this 
paper. This means the values of A(Prms shown are 
subject to an error of about _+0.3 °. Table 2 also con- 
tains the r.m.s, errors of the individual phases repre- 
sented by each sequence• Because of the Monte Carlo 
technique, these are not as accurately calculated as the 
overall r.m.s, errors, but it should be clear from the 
table that the errors are distributed fairly evenly 
among the phases. This is the property that makes 
these sequences particularly efficient [in fulfilment of 
the criterion (c)] and is important for all practical 
applications. 

A sequence of any length can easily be generated in 
the way shown by the examples in Table 2 and its 
r.m.s, errors may be estimated quite accurately as 
slightly more than the lower bound calculated from 
equation (20). However, long sequences will give rise 
to very large integers, making them less practical, and 
it becomes necessary to find other sequences with 
smaller integers. Reducing the sizes of the integers will 
result in higher phase errors, but these can be tolerated. 
It is only possible to produce sequences using smaller 
integers if the c o m m o n  ratio of the generating geomet- 
ric progression is made smaller than two. A true 
geometric progression is now impossible, but a good 
approximation can be obtained if each term is made a 
simple linear function of other terms. 

The ratio of adjacent members of the series 
F1,F2, . . . ,F  i will converge to a definite limit when the 
series is produced by: 

F,  = F ,_  i + F,_  j + . . . ,  (23) 

where i , j . . ,  are any integers and the limit will be the 
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largest positive root of the polynomial 

r"= r " -~+r" - J+  . . . .  (24) 

For example, the Fibonacci series 1 1 2 3 5 8 13 ... is 
generated when each term is the sum of the previous 
two. The ratio of adjacent terms rapidly converges to 
the limit (1 +]/5)/2, known in this case as the 'golden 
ratio', and the series is a very good approximation to 
a geometric progression. Using this series as the differ- 
ences between adjacent members of magic-integer 
sequences formed such that 2mx = m, + 1 produces the 
sequences shown in Table 3. A further example is 
shown in Table 4 where the magic-integer sequences 
are based on the series 1 1 1 1 2 3 4 5 7 10 14 . . . .  This 
series is generated by 

F,  = F,_ 1 + F,_ 4 (25) 

and the ratio of adjacent terms converges to a limit of 
1.380. The final example in Table 5 is of sequences 
based on the series 1 1 1 1 ... which may be regarded 
as a geometric progression of common ratio 1. 

In all of these examples, the r.m.s, error is only 
slightly more than the lower bound. This means that 
equation (20) can be used to estimate A tPrms for all 
sequences generated in this way instead of using either 
the analytical or Monte Carlo techniques. Note that 
the difference between Aq~rm s and A(pl b increases as 
the common ratio of the generating integer-geometric 
series decreases. This is because the rules for setting up 
efficient sequences, especially the important fourth 
rule, are less well obeyed as r decreases from a value of 
2. In addition, these sequences all have the important 
property that the errors in phase representation are 
distributed evenly among the phases concerned. This 
is not true of sequences generated in any other way 
tried so far. 

Very long sequences 

It is interesting to see how A~I b for efficient magic- 
integer sequences varies as a function of the length of 
the sequence, n, and the common ratio, r, of the gen- 
erating integer-geometric progression. Equation (20) 

Table 3. Magic-integer sequences based on the Fibonacci series 1 1 2 3 5 8 13 ..., generated by F. = F,_ 1 + F,_ 2 
and limiting ratio r =  1.618 

n Sequence A ~0~b A ¢p,~ 

2 2 3 20"4 20"4 
3 3 4 5 31"2 32"0 
4 5 7 8 9 35"2 36"1 
5 8 11 13 14 15 38"4 39"2 
6 13 18 21 23 24 25 40"5 41"4 
7 21 29 34 37 39 40 41 42"1 43"2 
8 34 47 55 60 63 65 66 67 43"4 44"4 
9 55 76 89 97 102 105 107 108 109 44"4 45"7 

10 89 123 144 157 165 170 173 175 176 177 45"2 46"6 

Table 4. Magic-integer sequences based on the series 1 1 1 1 2 3 4 5 7 10 ..., generated by F , = F , - 1  + F , - 4  and 
limiting ratio r= 1"380 

n Sequence dtp~b Atprms 

2 2 3 20"4 20"4 
3 3 4 5 31"2 32"0 
4 4 5 6 7 38"6 39"7 
5 5 6 7 8 9 44"1 45"6 
6 7 9 10 11 12 13 46"5 48"2 
7 10 13 15 16 17 18 19 48"2 49"9 
8 14 18 21 23 24 25 26 27 49"6 51"6 
9 19 24 28 31 33 34 35 36 37 51"1 52"9 

10 25 33 38 42 45 47 48 49 50 51 52"2 54"1 

Table 5. Magic-integer sequences 
n Sequence 

2 2 3 
3 3 4 
4 4 5 
5 5 6 
6 6 7 
7 7 8 
8 
9 

10 

based on the series 1 1 1 1 1 1 ..., generated 
A~lb 
20"4 

5 31"2 
6 7 38"6 
7 8 9 44"1 
8 9 10 11 48"4 
9 10 11 12 13 51"7 

8 9 10 11 12 13 14 15 54"5 
9 10 11 12 13 14 15 16 17 56"9 

10 11 12 13 14 15 16 17 18 19 58"8 

by F,  = 1 and common ratio r= 1 
A tP,ms 
20"4 
32'0 
39"7 
45"6 
50"0 
53"1 
56"2 
58"3 
60"1 
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can be used to calculate A ~P~b as a function of n and the 
results for the four different series in Tables 2 to 5 are 
shown in Fig. 5. Clearly, A qhb tends to a limit in each 
case which is dependent upon the value of r. The limits 
can be obtained by expressing Em 2 in (22) in terms of 
the parameters of the geometric progression. To a good 
approximation, (EmZ) 1/2 is linearly dependent upon 
r"-2, which is the highest power of r appearing in the 
complete expression. Putting 

o, / n '~1 /2  
~=1 m~ : A t  "-2 , (26) 

where A is a constant, from (22) and (26) we obtain: 

• 

l~na ACPlb = r \ e j radians. (27) 

It is clear from this and from Fig. 5 that the larger 
the value of r of the generating g.p. the smaller will be 
the r.m.s, error of the corresponding magic-integer 
sequence. This has practical significance and, indeed, 
leads to a further rule for generating efficient se- 
quences. If more than one sequence can be generated, 
using the rules outlined so far, of the same length n and 
using the same integers ml and mn at each end, the 
sequence corresponding to the larger value of r will 
have the smaller r.m.s, error. 

Note that for r =  1, equation (27) gives a lower 
bound of 87.2 °. This is a high error, but it certainly 
does not correspond to random phases (the r.m.s, error 
of random phases is 104"9°). If the actual error remains 

r=l 

r -  1.380 

t 6¢ r -  1.618 
Zlglb 

r = 2  
4c 

2c 

°o Io ' 6~) ;o I lOO 4o 
n - -  

F ig .  5. Plot of lower bound of r.m.s, error in degrees, Aq01b, against 
the length of sequence, n, for four different values of r, the 
limiting ratio of the generating integer-geometric progression. 

close to the lower bound for very long sequences, this 
means n phases can be represented by a single variable 
using the consecutive integers from n to 2 n - 1  with 
an error significantly less than that corresponding to 
random phases. In this case n can be large enough to 
represent most of the strong reflexions in a complete 
data set. 

In conclusion 

To summarize the recipe for generating efficient magic 
integer sequences: 

The sequence m l, m2,...,m, is such that 2m1 = m, + 1 
and the differences m n - m n _ l , m n _ l - m n _ 2 , . . . , m a -  
m 2 , m 2 - m l  form an integer-geometric progression 
with a common ratio, r, in the range 1 < r < 2 .  The 
larger the value of r, the more efficient the sequence 
will be. The integer-geometric progression is generated 
by relationships of the type shown in equation (23). 

No proof can be offered that this recipe always pro- 
duces the most efficient sequences. Such a proof would 
relate either to the most efficient covering or the most 
efficient packing of n-dimensional space with hyper- 
spheres and these are as yet unsolved problems in 
mathematics. However, the lower-bound formula (20) 
is quite rigorous and, as the sequences produced have 
errors which are only slightly greater than the lower 
bound, there remains very little room for improvement. 

The author has not investigated sequences based on 
geometric progressions for which r > 2, since these have 
not yet found any practical use. 

The author wishes to thank Mr D. Taylor for many 
stimulating discussions. Some of this work would have 
taken much longer without his keen interest in the 
problem. 
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